Introduction

Why use Perl?

It’s free

It’s been around for a long time

Bugs have been fixed

Lots of contributed functionality

Ported to lots of different systems

Used commonly so it’s a good thing to know

Available on many different platforms

Widely used

Easy to learn, yet very flexible and extendable

What is it good for?

Prototyping

Interpreted

Versus Compiled languages

Quicker development time, esp. for small tasks

Graphical interface

No memory allocation worries, etc make for quicker dev.

System Administration

Similar to other Unix tools, but more flexible

Available standard on many Unix systems

Ability to interact with the operating system easily

Web

Perl is the most popular scripting language on the web

CGI and other web modules available

Perl6 will make more of them standard

Other ways to do web programming, including Mason, mod_perl, IIS/ASP/Perlscript, etc.

Web client programming

How does it compare to other languages?

Some syntax is similar to C

Similar to Awk, Sed, and Grep Unix utilities

PHP syntax is similar

Perl6 will allow for pluggable syntaxes

Where is it heading?

Perl6

http://dev.perl.org/perl6/

Won’t be around for a while and Perl5 will be here for a long time

Perl6 is the first rewrite and one of the goals is to remain backward compatible so don’t worry

Installation

How and where to get Perl

http://www.activestate.com

What is ActiveState?

http://www.macperl.org

The environment in our classroom

Perl is on Unix server

Everyone has their own home directory

Mac acts as a dumb terminal

Can use BBEdit/FTP to edit files or telnet/vi

Printing

Saving files at the end of class

Other configurations

Install Perl at home for practice and online docs

Web hosting provider – similar to classroom setup

Running a Perl Script

Command-line vs. script files

One-liners on command line

Script file holds many statements – better for large programs

Command-line switches

-c

-v

-V gives more information including @INC

-e for one-liners

Can also use –n and –p with –I

More later if interested

Editing and running a script

Starting telnet

Logging in

Starting vi or BBEdit

Unix commands

ls

chmod

The script file used in Exercise 1

Exercise 1

The Ubiquitous “Hello World” program

Numbers

Numeric literals

Don’t have to worry about integer vs. floats

Everything is a float

Possible to change to integer math with pragma

Octals (0777), hex (0x456fff)

Arithmetic operators

Go over handout

Strings

String literals

Escape Sequences

Single vs Double quotes

Escape sequence interpolation

Variable interpolation

Using qq and q in place of quotes

Same rules above apply

qx and qw

Here documents

Quoting the END

String Operators

Go over handout

String Functions

How to find them in the documentation (perlfunc)

Formatting Output

Printf function

Go over handout

Exercise 2

Math and formatting output

�
Variables

Naming them

Stick to letters/underscores

Can put numbers in, but not at beginning

Be descriptive

Mention single character variables

Namespaces are separate

Scalar Variables

What are scalars?

Hold one value

Preceded by $

How are they created?

Examples with string literals, numeric literals, backticks and other variables

How are they addressed?

$

Curlies Example: print "$monthuary"

How are they interpolated in the different types of quotes

Not interpolated in single quotes

Example: print "give me \$$dollars"

Getting Input from the User

The STDIN predefined FH

What are STDIN, STDOUT, and STDERR?

Right now, it means coming from keyboard

Explain pipes, etc. if time?

What is a FH anyway?

References a file that we want to read/write/append

Everything's a file in UNIX – hence STDIN

Uses < >

Can create explicitly (more later)

Reading STDIN in scalar context (later we'll see arrays)

$x = <STDIN>;

explain array/scalar context

Chomp vs. chop

Always use chomp

No chomp in Perl4

No chop in Perl6

Exercise 3

Variables and getting user input

Arrays

Stores a list of things

Creating arrays

Draw map

$arr[2] = 'test'

What's with the $??? (not in Perl6)

@arr = ('rob','pamela','jackie','rob')

qw//

Printing arrays

Print @arr doesn't put spaces

Print "@arr" does

Loop is best (more later)

Finding the size of an array

Scalar context

scalar(@arr)

@arr + 0 – ugly example of forcing scalar context

$#arr

last element index

+1 for size of array

-1 if array is empty

Undefined array items

Show map again

Undef and defined function

There's a difference between undef and never created. Undef is a value.

Test grades example – missing vs. zero

Size after undefining an item stays same

Array slices

Creating an array from pieces of another one

Example: @x = $arr[1,2,3]; (or 1..3)

Lists vs. arrays

Array implies that we've named it (ie: created a variable)

@arr = (1,3,4,5,3); (array equals list)

(1..100) list

More About Arrays

The split and join functions

Split

Splits string into an array and returns it

Split /delim/, string, limit (tell them to play with limit later)

Join

Join 'delim', list of strings

The reverse function

Returns new array – leaves arg unchanged

Other array functions

Pop

Pop @arr

Returns last element of array

Returns undef if array is empty

Push array, list

Shift

Shift @arr

Returns first element of array

Unshift

See perlfunc arrays section for more

Distinction between lists and arrays

Exercises 4 & 5

Associative Arrays (hashes)

Arrays with strings as indexes

Give examples

How to create a hash

%hash = (key => val, key2 => val)

mention fat comma and barewords in there

Accessing them

$hash{key}

can't lookup by value easily

why dollar sign

functions

keys

values

delete

mention each

exists

special hashes

%ENV

Exercise 6

�

Control Structures

Code block

Bare blocks vs. labels

True and false

Zero or null string (false) … non-zero or string (true)

Using operators in handout to make expressions that evaluate to either true or false

boolean operators

and or not … && || !

mention ‘unless’ instead of not’s

If then else elsif (no ‘e’) syntax

Alternative syntax

Backwards - do something if / unless

Expression ? true : false;

Exercise 7

Loops

Code blocks and labels again

Goto is bad – show that you COULD create a loop with it

More in a few minutes

While loop

While ($line = <>)

Remind about chomp()

Show each() and hashes

Last, next, continue

Show all three (continue block needed for last one)

Show label ex – last LINE if .. instead of last if …

Why use continue?

So that next still does some action like incrementing a counter variable

For loop

Show that this is another way to do while/continue

Show (;;) with sleep()

Foreach loop

Easiest

Used with lists or arrays

Show examples of both using a list of strings, an array, and output of a function (keys())

Nesting

Show example with foreach loops

Default variable

Show with while ($line=<>) { print $line }

Exercise 8

�
Reading and Writing Files

Remind about <>

STDIN

Filehandles

ALL CAPS

No prefix (eg: $, @, etc)

Open FILE, “filename”

Reading < or nothing

Writing >

Truncates!!!

Appending >>

Mention Reading and Writing

+> write, then read (truncates first)

+< read, then write (starts at beg. of file)

+>> append, then write (starts at end of file)

mention seek, read, tell

Close!!!

Using II / OR with die()

Also show unless(open) { blah}

Mention Binmode – windows

Reading from a filehandle

While <FILEHANDLE>

@all = <FILEHANDLE>

Writing to a filehandle

Print FILEHANDLE

SELECT FILEHANDLE

Subroutines and Modules

Subroutines

Why?

Modularization (re-use, readability)

Black-box

other people can use them without knowing how they work (eg: save_user – db? File? Etc)

How to create them

Sub subname { }

Prototyping

Arguments @_

My() (and mention local())

How to use them

&subname

Forward declaration: sub subname;

Needed when sub is declared below

More information on perlsub manpage

Modules

Pragma

Use English

Use Integer

How to use it: Use CGI;

A lot are included, but some you have to get from CPAN

Mention ppm for ActiveState

Regular Expressions

Pattern matching operator

May need binding operator =~

Returns true or false

m//

Don’t need the ‘m’ unless we use something other than slash

Substitution

Can be used in true/false expression context but it’s often just used alone to make substitutions

Returns the number of subs or false if none

s//

always need the ‘s’

Modifiiers

Go after the slashes

Mention ‘i’ as most popular one

Metacharacters

^ matches start of line

$ matches end of line

. matches any one character

() grouping and backrefs (later)

| alternation

[] character class

any of these characters

can use hyphen for range

Show examples before continuing

Quantifiers

* Match 0 or more times

+ Match 1 or more times

? Match 1 or 0 times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

Mention greediness

Show examples

Can get rid of this behavior using ? at end of quantifier

Double Quoted Control characters

\t, \n, etc

More likely to use the ones that are added specifically for RE’s

\w word character (alphanum or _)

\s whitespace

\d digit

\W \S \D

backtracking

$1 $2 etc

either in second half of substitution

or can be in next lines (before another regex)

